PRIMARY DISINFECTANTS IN DRINKING WATER

- ALTERNATIVES & THEIR CHARACTERISTICS

Don Gates, Ph.D
Sacramento CA
For Vermont Agency of Natural Resources
Montpelier, VT. Nov 1, 2007

SOURCE WATER QUALITY

Source Water Quality

- Tremendous national variations
- Watershed protection & uses
 - E.g. Agriculture, cattle
 - Recreational use
- Assessment programs to identify source characteristics & contaminants
- NOM (Natural organic matter)
 - E.g. Humic substances,
- Seasonal growth impacts
 - Blue-green algae; Nostoc
 - Effect on manganese loading
 - Foliage or ice/winterkill
- Effects of rapid changes on treatment (e.g. spring runoff)
- Geology & local features
 - Lake, river, impoundments,
 - ground water (UI)

Fig. 12.7 Chemical network structure of humic acids according to Schulten and Schnitzer. Reproduced by permission of Springer-Verlag.

DBP's

- Many "oxidation byproducts" are common to all of the oxidative- disinfectant choices
- Halogen-substituted DBP's are the easiest ones to find and measure
- Over 600 DBP's have currently been identified

THE ALTERNATIVES

•	 CHLORINE – the accepted standard - Gas/liquid, aqueous (bleach), hypochlorite salts, electrochemical generation from (purified) brine 	Cl ₂
•	AMMONIA – CHLORINE PROCESS	
	 process favoring formation of chloramines 	NH ₂ CI
•	CHLORINE DIOXIDE	CIO ₂
	 Generated from chlorite or chlorate salts 	_
	 or electrochemically from brine (as acid) or chlorite 	
•	OZONE	O_3
	 Generated by corona discharge from LOX (O₂) purified, dried air 	·
	 Or VUV (190-200 nm) lamps 	
•	UV (additional inactivation to chemical) - From low & medium mercury lamps	UV _c

Disinfectants

Agent	Shipping	Storage & handling	<u>Generation</u>	Regulatory & industry
Liquid Chlorine	Approved but future concerns	Headers & evaporators; Future DHS rules	N/A	CI, AWWA MOP NSF certification Standard B300, GRAS – OPP
Hypochlorite salts (and Ammonia for chloramines)	Approved	Aqueous solutions chemical & acid-resistant pumps, containment for extra chemicals	Purified brine is needed for on-site electrochem. MCA forms rapidly & spontaneously in dilute solutions	CI, B300(04), Aqua (& other) ammonia: B302,5,6(07)
Chlorine dioxide	Not permitted	A few batch types for a few hours. Pumped/ educted. 30 days precursor storage required.	Chlorite-based, with Cl ₂ gas or bleach + acid; electrochemical and only one chlorate-peroxide-acid based system.	AWWA B303(05) NO standard for CIO ₂ purity, some vendors lack any "moral compass" OPP registration!

Disinfectants (cont'd)

<u>Disinfectant</u>	Shipping	Storage & handling	<u>Generation</u>	Regulatory & industry
Ozone	No	Educted as a gas in air or O ₂ , High efficiency ejectors; Prep Gas storage	Dried & purified air or LOX feed. Corona discharge from dielectrics or UV _D lamp	•NSF cert, •IOA & AWWA Vendors provide excellent support • Diffusers & Contactors
UV _C • 254 nm • 240 -315 nm	N/A	Maintenance & bulb replacement, high turbidity & - fouling	Medium & low pressure mercury lamps	NSF certificationIUVAVendors provideExcellent support

Chlorine Terminology

- Chlorine as molecular gas (Cl₂) hydrolyzes in water
 Cl₂ + H₂O → HCl + HOCl (T₁/2 ~ 3 msec)
- Depending on pH, these subsequently ionize to form their conjugate acid-base pair
 - Hypochlorous acid (HOCI) and Hypochlorite ion (OCI-)
 - Cl-, H+ (as H₃O+ proper) and OH-
 - This specific pH for 50% of each species is the pKa
 - pKA is 6.8 for [HOCI/OCI-] and 7.0 for water
 - All ionic species (including organics) have a pKa

Chlorine Oxidative Species –

a.k.a. "Interoxy halides"

Oxidation state	Species name	Formula	рКа
-1	Chloride	CI-	N/A
0	Chlorine (molecular)	Cl ₂	N/A (<ph 2)<="" td=""></ph>
+1	Hypochlorous acid - hypochlorite ion	HOCI & OCI	pH 6.8
+2	Chlorine monoxide	Cl ₂ O	Free radical
+3	Chlorous acid/chlorite	HClO ₂ & ClO ₂ -	< pH 1.7
+4	Chlorine dioxide	CIO ₂	Free radical
+5	Chloric acid/chlorate	HCIO ₃ & CIO ₃ -	< pH 1.7
+6	(Chlorine trioxide)	CIO ₃	Radical
+7	Perchloric acid - perchlorate ion	HCIO ₄ & CIO ₄ -	< pH 2

Chlorine Species (around water)

- Molecular chlorine (Cl₂)
 (gas from liquid) →
- Changes In Aqueous Solutions (low pH) after ejector/dilution into water (except @ < pH 2)
 - ~6 g/L from Cl₂ gas
- Or as hypochlorite salts (stored @ high pH for stability)
 - Bleach sodium hypochlorite
 - Trade %'s up to ~20%
 - Javelle water
 - Chlorine water

Chloramines:

- Formed favorably under dilute reactions between NH₃⁺ and HOCI/OCI⁻
- Monochloramine
 - (MCA or NH₂CI)
- Dichloramine (NHCl₂)
- Trichloramine (NHCl₃)
 - nitrogen trichloride
 - gas, but only at low pH
- Organic chloramines

BREAKPOINT CHLORINATION

- Overcome oxidant (organic and/or inorganic) demand to establish residual (C) disinfectant level
- For chloramination, dose ammonia and chlorine at levels to favor monochloramine formation

```
NH_3^+ + OCI^- \rightarrow NH_2CI (+ H_20)

\rightarrow (XS OCI^-) \rightarrow NHCI_2

\rightarrow (XS OCI^-) \rightarrow NCI_3

\rightarrow \rightarrow HOCI / OCI^-
```

+ X-DBP's

OXIDANT "DEMAND"

Generally, on a mass basis,
the "Oxidant Demand"
is far greater than the
"disinfection demand requirement"
for inactivating biological contaminants
in source and process waters.

OXIDANT DEMAND

- Varying constituents make up 'oxidant demand' mass in the source water
 - Mostly organic and inorganic moeties in source waters
 - Biological/microbial components are a small percentage of mass, but dominate the risk elements
- Normal procedure is to add sufficient oxidant to overcome demand – very complex kinetics
 - NOTE: Oxidation to extinction (CO₂ and H₂O) is not possible
- Modification of soluble phase constituents by oxidation often aids coagulation & clarification process
 - Reducing organic loading prior to adding disinfectant can reduce the levels of DBP precursors

Typical CIO₂ Profile (from Bubnis, et.al. AWWARF, 2008) Demand Concept 1

TERMINOLOGY (cont'd)

- Oxidation (LEO) & Reduction (GER)
- "Re-dox" reactions:
 - Many are going on at the same time in this complex matrix
 - "Simple" chemical reaction equations are a means to indicate one (or very few) of the many components.

Free Radical:

compound or species which has an unpaired electron in its outermost shell

Kinetics & thermodynamics:

- Reaction rates and equilibrium constants, effects of pH, temp and concentration, reaction half-lives, pKa's, end-product inhibition or soluble phase changes —---- optimal conditions
- all will affect the reactions that go on (some favorable, some not) not merely the oxidation potential of a half-reaction.

Oxidant Characteristics

SPECIES	Eº	Eo@pH7	Solubility	D. Efficacy
OH• Hydroxyl radical	2.80		(short half-life)	n/a
O ₃ Ozone	2.07	1.59	Very Low	++++
H ₂ O ₂ Peroxide	1.77		High	Poor - n/a
HCIO Hypochlorous	1.49	1.28	High	+++
CIO ₂ Dioxide	0.95	0.95	Very high	+++ -
CIO- Hypochlorite	0.90	0.49	High	++
CIO ₂ - chlorite ion	0.78	0.37	High	+
NH ₂ CI MCA	1.16	0.62	High	++
I ₂ lodine	0.62	0.62	High	++ -

Terminology – cont'd

• Electrophilic abstraction:

 electron transfer from oxidizable species (M) to the oxidant (e.g. ClO₂ + M → ClO₂ - + M_{ox}

Substitution reactions

- halogen is transferred onto organic molecule site replacing hydrogen,
- Cl-, Br- or l- depending on their presence in source water
- Disproportionation: decrease in oxidation state,
 - but not by a typical "redox" reaction
 - E.g. $NH_2CI \rightarrow OCI (or)$
 - ClO₂ → ClO₂ + ClO₃ at high pH

Chlorine Dioxide: CIO₂

- Unstable, uncompressible gas or in pure liquid form
 - must be generated on-site
- Stable free radical, dissolved gas in aqueous solution
 - More Specific oxidation reactions
 - Aka Chlorine peroxide
- Safe concentrations obtained by commercial generators (1-5 g/L)
 - Applied by vacuum injection or pumps (@ 1-2 g/L soln)
 - → → Final doses ~1-1.5 mg/L
- Forms chlorite & chlorate DBP's
- Monitoring requirements
 - Daily ClO₂ leaving plant
 - Daily & monthly chlorite levels

AWWA's Chemistry 101 for CIO₂

ABC conventional systems

"Unique" CIO₂ Reaction Column under high vacuum, before dilution water

CIO₂ generators

- Dozens of manufacturers & vendors, hundreds of patents
- Primarily Chlorite-based in the drinking water industry
 - 12% 25% Aqueous chlorite
 - One design uses solid chlorite impregnated into inert matrix
 - Only one chlorate-based, uses peroxide & sulfuric acid
- Production size (ppd) is critical
- 2 or 3 chemical systems
 - Cl₂ gas, bleach and/or acid
 - Recent advancements in electrochemical systems

Precautions

- Ensure proper start-up & training, chlorite safety
 - Fire training & MSDS
 - 2200°C, → → O₂
- Avoid mixtures of acid & chlorite under pressure
 - conditions are extremely dangerous
- Safe Patented Systems
 - Avoid Home-built units like this one!

Ozone generators

- Highly energetic corona discharge from glass dielectric material to SS outer ground
 - across 1-2.5 mm gap with O₂ flow under pressure
 - O₂ activated to intermediates which form ozone
 - but can also degrade ozone
 - factors pressure, dryness, purity, temp, residence time in gap,
 - Voltage, current intensity & frequency,
 - Production regulated to outside factors
 - pressure, gas flow & power
- Photochemical methods
 - VUV lamps (190-200 nm) –
 - higher energy (ionizing) radiation at lower UV wavelengths

Ozone in water

- Complex generation chemistry (ionized oxygen intermediates)
 - but very user friendly for application in water
 - Same oxy-intermediates also degrade ozone
- Ozone/O₂ mixture is not very soluble
- Boundary layer dynamics must be optimized to transfer O₃ before the bubble escapes.
 - (e.g. not enough transfer area or too short of time.
 - "Hard" or "soft" bubbles
 - Off-gassed ozone must be destroyed above contactors
- counter-current flow patterns for contact chambers increase times
- More efficient diffusers favor high CxT credits for ozone
- New Mazzie ejectors with internal mixing vanes
 - improve solubility and application into process water contact chamber

OZONE & related species - Decomposition in water

• Ozone O₃

Hydroxyl radical
 OH•

Superoxide radical O₂⁻

- Protonic form

Singlet oxygen

Aqueous Ozone Reactions

Ozone Demand

- Very different characteristics than the chlorine-based disinfectants.
- Much stronger (but) very non-specific oxidation
- Instantaneous demand must be satisfied, then rapid consumption and decay of O₃ means only short contact times can be established in properly designed contact chambers
- pH and carbonate affect ozone deterioration in solution

Approved (& Recommended) Monitoring Methods

Chlorine & chloramines

- "Free" or total chlorine kits
- DPD, DPD glycine, DPD FAS
- Amperometric method
- lodimetric (starch –iodine)
- Differential pH activity for MCA

Chlorine dioxide

- Lissamine Green B (LGB)
 - USEPA method 327, kits
- Amp titration Method II
 - Method-by-difference
 - APHA Method 4500.CIO2-E
 - Subject to False Positives

Ozone

Indigo Tri-Sulphonate (ITS)

- Daily in-plant testing
- Analytical Skills& training
 - On-line detectors
 - e.g. demand studies
 - dosage mass recoveries
 - Feedstock analyses
- Specificity is critical
 - false CxT's a problem!
 - Not so for routine chlorine
- DPD is no longer approved for ClO₂ (too non-specific)
- In-line electronic sensors for continuous CxT credits
 - O₃ & chlorine are good
 - ClO₂ only fair

UV Basics - Electromagnetic Spectrum

courtesy of Bertrand Dussert, Siemens

Generation of UV_C Light

- 1) Electrons are accelerated by an electric field through mercury vapor inside lamp
- 2) Part of them return from excited states to states of lower energy under spontaneous emission of UV radiation

UV "Dose" Terminology

- UV Fluence "Rate" (E')
 - W/m2 or mW/cm2
 - Total radiant power through a defined target
- UV Fluence "Dose" (H')
 - as J/cm2 or mJ/cm2
 - Dose is the time integral of the fluence rate,
 - or as total radiant energy at all wavelengths from all directions passing through an infinitely small target of a defined cross section dA

Monochromatic vs. Polychromatic UV Lamps – Spectral Emission

Mechanism of UV Disinfection

Impact of Lamp Technology on Installation, Operation, Performance and Maintenance of a UV System

Selection Criterion	LP/LO	LP/HO	LP Amalgam	MP
Performance – Impact of Water Temperature	High	High	Low	None
Performance - Mechanism	Damages DNA only; risk of photoreactivation			Damages DNA, proteins, enzymes, cell wall, and membrane; greatly eliminates risk of repair More efficient for Adenovirus

UV Lamp Types – Properties

Туре	Input Power (W)	UVC Efficiency (%)	Lifetime
			(Hours or years)
Low Pressure / Low Output	5-80	30-40	8,000-12,000
			(~ 1 - 1.5 yr)
Low Pressure / High Output	10-150	25-35	8,000-15,000
			(1- 2 yr)
Low Pressure / Amalgam	40-600	35	8,000-16,000
			(1-2 yr)
Medium Pressure	400–60,000	10-15	3,000-9,000
			(4 mos- 1 yr)

UV

Advantages

- Specific contact sites and short times of exposure
- Equipment reliability
- Specific λ mechanisms
- Few DBP's due to nonionizing radiation power
- Effective for chlorineresistant protozoan cysts
 & bacterial spores

- Intended as add-on protection to other primary disinfectants
- Some anti-microbial questions
 - Regrowth of damaged cells
 - Clumping, virus inactivation
- Dependence instrumentation
 - No residual "C" measured
 - Methods for confirming or monitoring inactivation
- Attenuation: high turbidity
- Lamp replacement
 - Frequency and cost
 - Planned redundancy
- May affect choice of system

Chlorine

Advantages

- Proven safe & effective technology
- Waterborne disease prevention
- Cheap & reliable
- Application and monitoring ease
- Excellent training & standards of practice

<u>Disadvantages</u>

- X-DBP's
- Storage questions
 - Environmental, urban
 - New DHS reports?
- Chlorine-resistant microbial species & protozoan oocysts
- May contribute chlorate from hypo salts
- Brominated species if bromide present

Chlorine Dioxide

Advantages

- Retrofit capabilities
- Readily available precursors
- Approved monitoring methods
- Many safe systems
 - Mechanical reliability
 - Technical expertise of vendors is in question

- Must be generated on-site
- More expensive than chlorine
- Volatile gas (e.g. over basins)
- No purity or performance standards
- (C) residuals difficult to measure and maintain - may lead to false CxT's
- More skill needed for monitoring & analysis → advanced training
- Some Offensive odor events reported
 - (but limited to new carpeting)
- Inorganic DBP's formed
 - chlorite (regulated)
 - chlorate (still unregulated)
- Most common problems-
 - improperly sized generators!

Ozone

Advantages

- Excellent anti-microbial efficacy
- Short exposure times
- Good analytical methods
- Reasonable scale-up costs
- Industry & Equipment Reliability

- More costly power
 - UV Lamp or dielectric replacement costs
- Design:
 - diffusers & contactor chambers
- Dry air gas prep costs or LOX
- Potential for regrowth from AOC produced by oxidation
 - BAF/BAC unit processes to assimilate organics
- Off-gas destruction required
- High bromate if Br- present
- poly-Substituted X-DBP's

(Mono)chloramine

Advantages

- Inexpensive, retrofit capability
- Spontaneously formed from convenient & safe feedstocks diluted into treatment process stream
- Stable in water due to its low oxidation potential
- Controls most halogenated DBP's
- Controls nuisance in-plant algae
- Controls chlorate (from ClO₂) that may form downstream

- Low antimicrobial efficacy
 - Extensive contact time needed
- Some DBP formation: research
 - including NDMA & DXAA
- Feedstock relationships are critical under different oxidant demand conditions
- Potential for higher order
 - (i.e. di- and tri- chloramines)
- Additional feedstock chemical
- Potential for nitrification during high DS temperatures

These are not simple choices!

- DBP's only part of the story
- Oxidant applications
- Retrofit capabilities &/or additional costs
- Bench, pilot or in-plant trials → proper design
- Training & experience
- Effective Monitoring
 - not just LED's or ORP

Microbial risks >>> "chemical" risks from DBP's

Technical advances in analytical detection methods (e.g. low PQL's) for DBP's are much easier and/or quicker to achieve, compared to those improvements we need for actual occurrence levels, risk models or other data used to assess impacts on human health.

Chlorine Dioxide

- Precursor chlorite requires registration with OPP under FIFRA but the chlorate precursor is still a question?
- Generated ClO₂ equipment performance and purity is unregulated
 - not certified by NSF 60/61
 - Excess HOCl appears as "false" ClO₂
- Highly soluble gas in water,
 - Boiling Point @ 8°C, volatile
 - subject to air stripping or CO₂
 - injected prior to GAC/PAC
 - Or into rapid mix with lime,

- Does not hydrolyze like chlorine gas (106 times slower)
- Not as pH sensitive as chlorine as a disinfectant
- AWWA standard B303(05) for sodium chlorite purity
- NSF certification required for precursors chlorite, hypo (bleach) and acid
- Adequate trials, testing and operator training is essential
- Production size is <u>critical</u>!

Chemical Terminology - OZONE

- Ion radical (mostly for ozone species)
 - species has an extra electron for a single negative charge to complete the shell
- Direct Ozone or radical oxidation pathway
 - Two pathways for oxidation by ozone or its radicals formed by decomposition in water

Ozone bubble rise rate

FUNDAMENTAL ASPECTS

Source: Masschelein (1982a).

Figure II—48 Bubble Rise Velocity as a Function of Dimensions

Ozone decay in water

Ozone diffusion boundaries

117

Source: Masschelein (1982a)

Figure II-47 Schematic of Double-Film Transfer

Germicidal Wavelengths

All UV-C is not created equal

Microbial effect of a low pressure lamp

Microbial effect of a medium pressure lamp

